The SCFSlimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication
نویسندگان
چکیده
Restricting centriole duplication to once per cell cycle is critical for chromosome segregation and genomic stability, but the mechanisms underlying this block to reduplication are unclear. Genetic analyses have suggested an involvement for Skp/Cullin/F box (SCF)-class ubiquitin ligases in this process. In this study, we describe a mechanism to prevent centriole reduplication in Drosophila melanogaster whereby the SCF E3 ubiquitin ligase in complex with the F-box protein Slimb mediates proteolytic degradation of the centrosomal regulatory kinase Plk4. We identified SCF(Slimb) as a regulator of centriole duplication via an RNA interference (RNAi) screen of Cullin-based ubiquitin ligases. We found that Plk4 binds to Slimb and is an SCF(Slimb) target. Both Slimb and Plk4 localize to centrioles, with Plk4 levels highest at mitosis and absent during S phase. Using a Plk4 Slimb-binding mutant and Slimb RNAi, we show that Slimb regulates Plk4 localization to centrioles during interphase, thus regulating centriole number and ensuring the block to centriole reduplication.
منابع مشابه
The SCF/Slimb Ubiquitin Ligase Limits Centrosome Amplification through Degradation of SAK/PLK4
Centrioles are essential for the formation of microtubule-derived structures, including cilia and centrosomes. Abnormalities in centrosome number and structure occur in many cancers and are associated with genomic instability. In most dividing animal cells, centriole formation is coordinated with DNA replication and is highly regulated such that only one daughter centriole forms close to each m...
متن کاملThe E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis.
Centrioles function as core components of centrosomes and as basal bodies for the formation of cilia and flagella. Thus, effective control of centriole numbers is essential for embryogenesis, tissue homeostasis and genome stability. In mammalian cells, the centriole duplication cycle is governed by Polo-like kinase 4 (Plk4). Here, we identify the E3 ubiquitin ligase Mind bomb (Mib1) as a new in...
متن کاملPromotion and Suppression of Centriole Duplication Are Catalytically Coupled through PLK4 to Ensure Centriole Homeostasis
PLK4 is the major kinase driving centriole duplication. Duplication occurs only once per cell cycle, forming one new (or daughter) centriole that is tightly engaged to the preexisting (or mother) centriole. Centriole engagement is known to block the reduplication of mother centrioles, but the molecular identity responsible for the block remains unclear. Here, we show that the centriolar cartwhe...
متن کاملRegulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number
Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling ...
متن کاملThe SCFSlimb E3 ligase complex regulates asymmetric division to inhibit neuroblast overgrowth.
Drosophila larval brain neuroblasts divide asymmetrically to balance between self-renewal and differentiation. Here, we demonstrate that the SCF(Slimb) E3 ubiquitin ligase complex, which is composed of Cul1, SkpA, Roc1a and the F-box protein Supernumerary limbs (Slimb), inhibits ectopic neuroblast formation and regulates asymmetric division of neuroblasts. Hyperactivation of Akt leads to simila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 184 شماره
صفحات -
تاریخ انتشار 2009